
Taming rich text content
in Django

Django Day Copenhagen 2023

Let’s talk about prose

What is prose?

● It’s a strange word.

● It is written or spoken language in its ordinary form, without metrical structure.

An example of written prose in rich text

We built Django Prose in order to provide us with a clean, robust and secure full
stack solution to manage rich text content in our Django projects. Until now, we
found no existing solution that covered all these needs. Let’s run through them
quickly one by one.

Django Prose is super clean. All you need to do is:

Install it. Example: poetry add django-prose.
Add it to Django’s INSTALLED_APPS settings.
Use the Document model or RichTextField directly in your own models.

For a web application, prose is just multiline text

● We know how to handle multiline text in web applications.

● Plain text is a bit bland though.

● Not all text is cut from the same cloth (e.g. plain text, code, rich text).

Let’s spice up our example

An example of written prose as rich text

We built Django Prose in order to provide us with a clean, robust and secure full
stack solution to manage rich text content in our Django projects. Until now, we
found no existing solution that covered all these needs. Let’s run through them
quickly one by one.

Django Prose is super clean. All you need to do is:

● Install it. Example: poetry add django-prose.
● Add it to Django’s INSTALLED_APPS settings.
● Use the Document model or RichTextField directly in your own models.

What is rich text?

Rich text is just text enhanced with formats and styling to help content stand out:

● Strong (or bold) text

● Unordered and ordered lists

● Images

● Subscripts

What’s makes rich text special

What makes rich text special

All text is made equal, but some text is more equal than others.

● Contrary to plain text it is stored encoded and then rendered differently.

● More than often than not, it can be in long-form.

● There are multiple formats and interoperability is not guaranteed.

Rich text formats

There are multiple rich text formats, each one with its pros and cons.

● OOXML (Microsoft Word .docx)

● Markdown

● HTML

● A straightforward way to handle rich text in web applications is… HTML.

● We should be cautious, when handling rich text in our web applications.

● We should be extra cautious, when handling rich text content from users.

Rich text in web applications

Caveats in rich text

Rich text caveats

● Security

● Performance

● Workflow

Security

Security

Since rich text is rendered, we need to take care of a few things, like:

● XSS attacks

● HTML highjacking

● JavaScript global namespace (window) polluting

Innocent rich text

Hello Copenhagen!

Thank you for this opportunity.

Hello Copenhagen!

Thank you for this opportunity.

<script src=”https://pkasid.com/bad.js”></script>

Not so innocent rich text: XSS

Hello Copenhagen!

Thank you for this opportunity.

</body>

<!-- lol! -->

Not so innocent rich text: HTML hijacking

Hello <strong id=”jQuery”>Copenhagen!

Thank you for this opportunity.

Not so innocent rich text: window polutting

Security tips

● Always sanitize rich text content before storing.

● Consider sanitizing text before rendering.

● For some cases, consider rendering in its own browser context.

Performance

Performance

We should pay close attention to performance, when dealing with rich-text content.

● It takes up more space than its plain text counterpart.

● Its content often is long form.

● More often than not it does not need to be be part of “list queries”.

Performance tips

● Strip it of redundant HTML tags and attributes

● Store it in separate database tables

● Fetch it from the database only when needed

Let’s take an example.

Example GitHub release notes

1093 bytes of UTF-8 plain text

🙌 Improvements

Attachment Upload Changes by @chrisgrande in #46
editor.js, widget.py trix 2.0.0 by @onno-timmerman in #50
⚠ Breaking changes

Remove id from allowed attributes by @parisk in #60
⚙ Internal updates

fix(deps): bump sqlparse from 0.4.3 to 0.4.4 by @dependabot in #44
fix(deps): bump django from 4.2 to 4.2.1 by @dependabot in #45
fix(deps): bump django from 4.2.1 to 4.2.2 by @dependabot in #47
fix(deps): bump django from 4.2.2 to 4.2.3 by @dependabot in #48
chore(deps-dev): bump black from 23.3.0 to 23.7.0 by @dependabot in #51
fix(deps): bump django from 4.2.3 to 4.2.4 by @dependabot in #52
fix(deps): bump actions/checkout from 3 to 4 by @dependabot in #53
fix(deps): bump django from 4.2.4 to 4.2.5 by @dependabot in #54
chore(deps-dev): bump black from 23.7.0 to 23.9.1 by @dependabot in #55
Bump Trix to 2.0.6 by @parisk in #56
Bump Trix to 2.0.7 by @parisk in #59
Bump version to 2.0.0 by @parisk in #61
New Contributors

@chrisgrande made their first contribution in #46
@onno-timmerman made their first contribution in #50
Full Changelog: 1.2.2...2.0.0

11707 bytes of UTF-8 rich text in HTML format

<h2>🙌 Improvements</h2>

Attachment Upload Changes by <a class="user-mention notranslate" data-hovercard-type="user"
data-hovercard-url="/users/chrisgrande/hovercard" data-octo-click="hovercard-link-click"
data-octo-dimensions="link_type:self" href="https://github.com/chrisgrande">@chrisgrande in <a
class="issue-link js-issue-link" data-error-text="Failed to load title" data-id="1708161312"
data-permission-text="Title is private" data-url="https://github.com/withlogicco/django-prose/issues/46"
data-hovercard-type="pull_request" data-hovercard-url="/withlogicco/django-prose/pull/46/hovercard"
href="https://github.com/withlogicco/django-prose/pull/46">#46
editor.js, widget.py trix 2.0.0 by <a class="user-mention notranslate" data-hovercard-type="user"
data-hovercard-url="/users/onno-timmerman/hovercard" data-octo-click="hovercard-link-click"
data-octo-dimensions="link_type:self" href="https://github.com/onno-timmerman">@onno-timmerman in <a
class="issue-link js-issue-link" data-error-text="Failed to load title" data-id="1789328917"
data-permission-text="Title is private" data-url="https://github.com/withlogicco/django-prose/issues/50"
data-hovercard-type="pull_request" data-hovercard-url="/withlogicco/django-prose/pull/50/hovercard"
href="https://github.com/withlogicco/django-prose/pull/50">#50

...and so on

Another example

Let’s imagine we have an application like X:

● Posts can be up to to ~500 bytes of text.

● Multiple users can post

● Users can reply to posts with posts

Another example

This post is about 500 bytes

We will compare the following

● Two different tables; inline rich-text content and foreign-key external

● Two different queries: select * and select id, title

Performance tests

A picture is a thousand words

SELECT * FROM table

SELECT id, title FROM table

Workflow

Workflow

All of these need to be taken care of by our development workflow.

● User friendly experience with an appropriate editor.

● Crystal clear data format. We should know what is safe and what is not.

● Transparent management of security and performance, where possible.

It’s about time we talk Django

Django Prose

We built an open source library that helped us achieve the above and is

● Easy to integrate and use

● Secure

● Robust

What’s in the box

● Field and model for storing rich text content.

● Widget for editing rich text content with WYSIWIG editor (Trix).

● URLs and views for storing attachments.

● Admin site integration.

Integrating Django Prose

To get started with Django Prose all you have to do is:

1. Install the django-prose package

2. Add prose in the INSTALLED_APPS setting

3. Use Document for partitioned and RichTextField for inline content

Integrating Django Prose with attachments

To get started with Django Prose all you have to do is:

1. Install the django-prose package

2. Add prose in the INSTALLED_APPS setting

3. Use Document for partitioned and RichTextField for inline content

4. Include prose.urls in your URLs

...before

INSTALLED_APPS = [

 "django.contrib.admin",

 "django.contrib.auth",

 "django.contrib.contenttypes",

 "django.contrib.sessions",

 "django.contrib.messages",

 "django.contrib.staticfiles",

 "prose",

 "blog",

]

...after

settings.py

from django.conf import settings

from django.db import models

from prose.fields import RichTextField

from prose.models import AbstractDocument, Document

class Article(models.Model):

 title = models.CharField(max_length=255)

 author = models.ForeignKey(

 settings.AUTH_USER_MODEL,

 on_delete=models.CASCADE,

)

 excerpt = RichTextField(blank=True, null=True)

 body = models.OneToOneField(Document, on_delete=models.CASCADE)

models.py

views.py
from django.shortcuts import render

from blog.models import Article

def blog_index(request):

 articles = Article.objects.all()

 context = {"articles": articles}

 return render(request, "blog/index.html", context)

def blog_article(request, pk):

 article = Article.objects.get(pk=pk)

 context = {"article": article}

 return render(request, "blog/article.html", context)

article.html

{% extends 'blog/base.html' %}

{% block title %}{{ article.title }} | Blog example | Django Prose{% endblock title %}

{% block description %}{{ article.excerpt }}{% endblock description %}

{% block content %}

<h1>{{ article.title }}</h1>

<div>{{ article.author.username }}</div>

<div>{{ article.body.content | safe }}</div>

{% endblock content %}

urls.py
from django.conf import settings

from django.conf.urls.static import static

from django.contrib import admin

from django.urls import include, path

from blog import views

urlpatterns = [

 path("", views.blog_index, name="blog_index"),

 path("articles/<int:pk>/", views.blog_article, name="blog_article"),

 path("admin/", admin.site.urls),

 path("prose/", include("prose.urls")),

] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Django Prose vs f”{you_name_it}”

Django Prose vs f”django-{wysiwig_editor}”

It focuses on rich text workflows, instead of the editor component, unlike

● https://github.com/django-ckeditor/django-ckeditor

● https://github.com/islco/django-trix

● https://github.com/zakdoek/django-prosemirror

https://github.com/django-ckeditor/django-ckeditor
https://github.com/islco/django-trix
https://github.com/zakdoek/django-prosemirror

Django Prose vs content management libraries

It focuses on rich text integration in web apps, not full content management, unlike

● https://github.com/django-cms/django-cms

● https://github.com/wagtail/wagtail

https://github.com/django-cms/django-cms
https://github.com/wagtail/wagtail

The future

We have multiple ideas for the future of Django Prose

● Pluggable editor front-ends (e.g. Trix, ProseMirror, CKE etc.)

● Multiple output formats (e.g. HTML for e-mail, Markdown etc.)

● Attachments with pre-signed URLs

● Embedded content (e.g. Tweets, social media cards etc.)

Wrapping up

Django Prose

● GitHub: https://github.com/withlogicco/django-prose

● PyPI: https://pypi.org/project/django-prose/

https://github.com/withlogicco/django-prose
https://pypi.org/project/django-prose/

whoami

● Paris Kasidiaris

● Co-founder at LOGIC

● https://twitter.com/pariskasid

● https://github.com/parisk

● https://www.linkedin.com/in/pkasid

https://withlogic.co
https://twitter.com/pariskasid
https://github.com/parisk
https://www.linkedin.com/in/pkasid

LOGIC

● We provide professional services for web development with Django

● We publish Open Source at https://github.com/withlogicco

● Learn more at https://withlogic.co

● Get in touch at hey@withlogic.co

https://github.com/withlogicco
https://withlogic.co
mailto:hey@withlogic.co

Thank you.
@pariskasid

